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QUANTUM GROUPS AND

REPRESENTATIONS WITH HIGHEST WEIGHT

Joseph Bernstein and Tanya Khovanova

April 8, 1997

Abstract. We consider a special category of Hopf algebras, depending on parame-

ters Σ which possess properties similar to the category of representations of simple Lie
group with highest weight λ. We connect quantum groups to minimal objects in this

categories—they correspond to irreducible representations in the category of repre-
sentations with highest weight λ. Moreover, we want to correspond quantum groups

only to finite dimensional irreducible representations. This gives us a condition for
λ: λ— is dominant means the minimal object in the category of representations with

highest weight λ is finite dimensional. We put similar condition for Σ. We call Σ
dominant if the minimal object in corresponding category has polynomial growth.

Now we propose to define quantum groups starting from dominant parameters Σ.

1. Definitions and examples

1.1 Torus. Let us fix an n-dimensional torus H (i.e. an algebraic group isomorphic
to C∗n). We denote by S the Hopf algebra of regular functions on H. Let Λ be the
lattice of characters of H. Then Λ ⊂ S is a basis in S. The dual algebra S∗ can
be realized as the algebra of functions on the lattice Λ. We denote by Ĥ the group
algebra of H: for any element h ∈ H we denote the corresponding generator in Ĥ

by ĥ (ĥ1ĥ2 = ĥ1h2). The Hopf algebra Ĥ is a subalgebra in S∗ (ĥ(λ) = λ(h)) on
which the comultiplication is well defined: ∆ĥ = ĥ⊗ ĥ.

The Hopf algebra Ĥ is too small for some of our future purposes. In order to be
able to define the comultiplication on S∗ we have to complete S∗ ⊗S∗ to (S⊗S)∗.
We need the comultiplication to define an action of S∗ on the tensor product of
two S∗-modules. We are interested only in those S∗-modules W for which the
S∗-module structure is inherited from some S-comodule structure. That means,
we should consider only S∗-modules W which are algebraic representations of H.
Under this condition the completed comultiplication on S∗ would allow us to define
the action of S∗ on the tensor product of two such S∗-modules (see [B-Kh]).

We set S∗⊗̂S∗ := (S⊗S)∗. The algebra S∗⊗̂S∗ could be realized as the algebra
of all functions on the lattice Λ⊕Λ. If f ∈ S∗ then ∆f(λ1, λ2) = f(λ1 + λ2).

For convenience, let us denote by S? either Ĥ, or S∗ with restrictions described
above (or, any other suitable representative of a dual Hopf algebra of S)
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1.2 Datum. Given H our datum Σ would be two finite sets of size m: {α1, α2,
..., αm} ⊂ Λ \ {0} — the set of non-zero characters; and {γ1, γ2, ..., γm} ⊂ H —
the set of points of the torus. We denote a generator γ̂k ∈ Ĥ corresponding to the
point γk ∈ H by Kk. We denote αi(γj) by qij.

1.3 Tetramodules. Using our datum we can construct an S-tetramodule T and
an Ĥ-tetramodule V (we can consider V as an S∗-tetramodule, see above). For
definition of tetramodule (Hopf bimodule etc.) (see [B-Kh] and references there).
Informally, S-tetramodule is an S-bimodule and S-bicomodule with some natural
axioms. The tetramodule T is generated over S by its space of right H-invariants.
The elements ti 1 ≤ i ≤ m would generate a linear basis in this space. Then we
describe an S-tetramodule structure of T as follows:

∆ti = ti ⊗ 1 + αi ⊗ ti

stis
−1 = s(γi)ti for s ∈ Λ.

Analogously, an Ĥ-tetramodule V is generated over Ĥ by elements Ei 1 ≤ i ≤ m
with the following tetramodule structure:

∆Ei = Ei ⊗ 1 +Ki ⊗Ei

ĥEiĥ
−1 = αi(h)Ei for ĥ ∈ Ĥ ⊂ S∗.

1.4 Categories. Given an S-tetramodule T denote by H(S, T ) the category of
Z+-graded Hopf algebras B such that B0 = S, B1 = T ; and B supplies T with the
given S-tetramodule structure.

Given our datum we have two categories—H(S, T ) and H(S? , V ). By latter
category we mean either H(Ĥ, V ), or H(S∗, V ) with restrictions discussed above.

1.5 Examples. 1. Let G be a simple Lie group, and H—its Cartan subgroup.
Consider datum Σ depending on a parameter q. We put Σ to be the set {αi} of
simple roots and the set {γi} such that αi(γj) = q<αi,αj>, where the elements
< αi, αj > form a Cartan matrix of G. Then the universal enveloping algebra of
a Borel subalgebra B+ of a quantum group Gq is an object in H(S∗ , V ). Actually,
when q 6= 1 the Hopf algebra U(B+) is an object in H(Ĥ , V ), but the limit q → 1
should be considered in the bigger algebra.

2. Let G be a reductive algebraic group; H—its Cartan subgroup. Let A = C[G]
be the Hopf algebra of regular functions on G and I the Hopf ideal of functions
equal to 0 on H. Then S = C[H] equals A/I; and the adjoint graded Hopf algebra
grA (with respect to I) is the object in H(S, T ), where T is described by datum
{αi}—the set of non-zero roots and all γi equals 1.

3. Let Gq be a quantum deformation of a simple Lie group G. By this we mean
a flat family of Hopf algebras Aq which are deformations of A = C[G]. It can be
shown that we can flatly deform an ideal I (see Example 2) so that the family of
quotient Hopf algebras Hq = Aq/Iq is constant and equals S = C[H]. It is easy
to see that the adjoint graded algebra grAq for generic q is the object in H(S, T ),
where T is defined by following datum Σ: the set of characters is the set {αi,−αi},
where αi are all simple roots, the set of points is {γi, γi} such that αi(γj) are defined
by Cartan matrix of G.
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Given a quantum group Gq we can construct a Hopf algebra B1
q ∈ H(S?, V )

for some datum Σ1(Gq), see example 1. Also, there is another construction (from
example 3) of a Hopf algebra B2

q ∈ H(S, T ) for some other datum Σ2(Gq). We
suggest that we have some construction (of example 1 or 3, or maybe similar) such
that we can describe any quantum group Gq in terms of some Hopf algebra Bq ,
which is an object in the category H(S, T ) or H(Ĥ, V ) (resp. H(S∗ , V )) for some
datum Σ.

1.6 Our goals. Given a quantum group Gq we constructed a Z+-graded Hopf
algebra in some category H(S, T ) for some datum Σ (see 1.5). We would like to
answer the following questions:

1) Given datum Σ how we can distinguish an object in the category H(S, T )
which could correspond to a quantum group.

2) What properties should Σ satisfy in order to supply the category H(S, T ) with
an object which correspond to some quantum group.

2. The category of modules with highest weight

2.1. Our intuition and constructions are partly based on the idea from our previ-
ous paper [B-Kh] of deep parallelism of properties of the category H(S, T ) (resp.
H(S∗ , V )) and the category of modules with highest weight λ.

Our datum now are the simple Lie group G and the weight λ, λ ∈ H∗. We
consider the category O′ of modules over G from the category O, such that all
their weights belong to the set {λ− Γ+}, where Γ+ is generated over N by simple
roots.

2.2. Consider the functor J : O′ → V, where we denote the category of vector
spaces by V, such that to any module M we correspond the vector space X of
vectors of weight λ.

Lemma. The functor J possess the left adjoint functor F : V → O′.

Consequently, for any X ∈ V we can construct a module FX, such that

(1) homO′(FX,M) = homV(X, JM).

Example. If X = C then FX = Mλ—the Verma module with highest weight λ
which possess the fixed vector of weight λ. The equality (1) means that for any
module M and for any morphism C → JM we can construct a unique morphism
Mλ → M which is identical on the image of C. Denote by CM the category of
modules fromO′ together with the fixed morphism C→ JM . Then we can rephrase
our example, saying that the Verma module is the initial object in the category CM
(compare [B-Kh]).

Proof. The example above gives us a proof when dimX = 1. The proof for any X
could be easily modified from this example.

Lemma. The functor J possess the right adjoint functor H: V → O′.

Consequently, for any X in V we can construct a module FX such that:

(2) homV (JM,X) = homO′(M,HX).
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Example. If X=C then FX = δλ—the contragredient Verma module with fixed
highest covector of weight λ. The equality above means that for any module M
and any morphism JM → C we can construct a unique morphism M → δλ which
is identical on the fixed covector. Denote by MC the category of modules from O′
together with the fixed morphism JM → C. Then we can rephrase our example,
saying that the contragredient Verma module δλ is the final object in the category
MC (compare [B-Kh]).

Proof. In the category O′ there is a natural duality: M → M?, where we define
each weight subspace of M? as a regular dual to corresponding weight subspace in
M : (M?)η = (Mη)∗. The action of the group G is defined naturally. After this
remark the existance of final object inMC becomes automatic and the construction
of the contragredient Verma module becomes trivial: δλ = (Mλ)?.

2.3 Shapovalov map. Consider the category M of modules M ∈ O′ such that
dim(JM) = 1 together with fixed isomorphism between JM and C. This category
is the subcategory in CM and inMC. As Mλ ∈M ⊂ CM it is an initial object in
M, analogously, δλ is a final object inM. Therefore, there exists a canonical map
Sh: Mλ → δλ which is called a Shapovalov map. (As δλ ⊂ M∗λ the Shapovalov
map defines the Shapovalov form on Mλ).

Going back to functors, if we put M = FX into (1), we get

homO′(FX, FX) = homV(X, JFX).

The identity isomorphism on the left corresponds to a canonical element j on the
right which is called the adjunction map: j: X → JFX. It is easy to check that in
the category M the adjunction map j: X → JFX is an isomorphism ∀X ∈ V. If
we put instead of M the module FX in (2) we would get:

homO′(FX,HX) = homV (JFX,X).

For the category M the identity element in the right hand side (which is inverse
of the adjunction map j) would correspond to a canonical morfisms of functors on
the left:

Lemma. In the categoryM there exists a canonical morphism of functors F → H.

We denote Lλ the image of the Shapovalov map in δλ. The module Lλ is an
irreducible representation of G with the highest weight λ. The module Lλ is the
minimal object in M. That means that for any module B ∈ M there exists a
submodule B′ ⊂ B and a canonical epimorphism B′ → Lλ.

2.4 Point. We would keep in mind for the next section that minimal object in the
category M is of importance. Also, if we consider the category M as a function of
λ we may say that we are interested in those λ’s when the dimension of minimal
object in M is dropping significantly. (Weight λ is called dominant if Lλ is finite
dimensional).
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3. Our categories

3.1 Parallel construction. Let us fix S—the Hopf algebra of functions over
torus. We denote by T the category of tetramodules over S. We denote by A
the category of Z+-graded Hopf algebras with 0-graded subalgebra isomorphic to
S and the subspace of each grade is finitely generated over S. Consider the functor
J : A → T which corresponds to a given Hopf algebra A a 1-graded subspace of A
with inherited S-tetramodule structure [B-Kh].

Lemma. The functor J possess the left adjoint functor F : T → A.

Proof. Given an S-tetramodule T we can construct a Z+-graded algebra A such
that A0 = S, A1 = T , and the algebra A is freely generated as an algebra by S
and T and A supplies T with the given S-bimodule structure. We can construct a
comultiplication on A by multiplicativity. Being universal as an algebra, the Hopf
algebra A remains universal as a Hopf algebra.

Lemma. The functor J possess the right adjoint functor F : T → A.

Proof. Given an S-tetramodule T we can construct a Z+-graded coalgebra A such
that A0 = S, A1 = T , and the coalgebra A is freely generated as a coalgebra by S
and T and A supplies T with the given Sbicomodule structure. We can construct a
multiplication on A by comultiplicativity. Being universal as a coalgebra, the Hopf
algebra A remains universal, when the Hopf algebra structure is added [B-Kh].

Remark. We can construct a category A? of Z+-graded Hopf algebras dual to the
category A. To each Hopf algebra A ∈ A we correspond a Hopf algebra A? ∈ A?
such that A? as an algebra is a subalgebra in A∗ and each component (A?)n of A?

is isomorphic as a vector space to S? ⊗M∗, when An = S ⊗M . After that our
universal coalgebra in A corresponds to universal algebra in A?.

As in section 2, let us consider the category H(S, T ) and for each element A ∈ H
let us fix an isomorphism of A/A2 with S ⊕ T . It is easy to see that the category
H(S, T ) is similar to the category M in chapter 2.

In particular, there exists an initial object in the category H(S, T ). It is called a
universal algebra. We denote it by Bi(S, T ). It corresponds to Verma module Mλ.

There exists a final object in the category H(S, T ). It is called a universal
coalgebra. We denote it by Bf (S, T ). It corresponds to contragredient module δλ.

Hence, there is a canonical map Sh : Bi → Bf which is analogue of the Shapo-
valov map. We would denote the image of this map by Bm(S, T ). This would be
the minimal object in the category H(S, T ). The Hopf algebra Bm corresponds to
an irreducible representation in our parallelism.

3.2 Answers to questions. Constructing a parallelism between the categoriesM
and H(S, T ) we now can use our intuition in M to understand what is important
in H(S, T ). Now we are ready to answer to our first question. If quantum groups
corresponds to datum Σ, then it corresponds to a minimal object Bm in the category
H(S, T ), where the category H(S, T ) is constructed by our datum.

We would call our datum Σ dominant if the minimal object Bm in the category
H(S, T ) has polynomial growth over S.
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As an answer to our second question, we suggest that quantum groups correspond
to Hopf algebras which are minimal objects constructed from dominant datum.
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