Number of Divisors

Tanya Khovanova

December 5, 2011

Class Discussion

An integer has an odd number of divisors iff it is a square. An integer is *square-free* (not divisible by any square) iff its number of divisors is a power of two.

Denote $\tau(n)$ the number of factors of n. If $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ is a prime decomposition of n, then the number of divisors of n is:

$$\tau(n) = (a_1 + 1)(a_2 + 1) \cdots (a_k + 1).$$

The product of all factors of n is:

 $n^{\tau(n)/2}$.

Warm-Up

Exercise 1. No one is standing in the room, but rather every person is sitting on a three-legged stool or a four-legged chair. There are 39 legs total in the room and no places to seat are left. How many stools are there?

Exercise 2. Do there exist natural numbers x, y, and z satisfying the equation: 28x + 30y + 31z = 365?

Number of Divisors

Exercise 3. HMNT 2011, Guts round 7 points. How many ordered triples of positive integers (a, b, c) are there for which $a^4b^2c = 54000$?

Exercise 4. AIME 1988. Compute the probability that a randomly chosen positive divisor of 10^{99} is an integer multiple of 10^{88} .

Exercise 5. Determine the product of distinct positive divisors of 120. What about 100?

Exercise 6. Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple of a and b is $2^35^711^{13}$.

Exercise 7. HMNT 2011, Guts round 10 points. For a positive integer n, let p(n) denote the product of the positive integer factors of n. Determine the number of factors n of 2310 for which p(n) is a perfect square.

Exercise 8. Find all natural numbers that are divisible by 30 and have exactly 30 distinct divisors.

Competition Practice

Exercise 9. HMMT 2011, Guts round. 8 points. Rosencrantz and Guildenstern play a game in which they repeatedly flip a fair coin. Let $a_1 = 4$, $a_2 = 3$, and $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 3$. On the *n*th flip, if the coin is heads, Rosencrantz pays Guildenstern a_n dollars, and, if the coin is tails, Guildenstern pays Rosencrantz a_n dollars. If play continues for 2010 turns, what is the probability that Rosencrantz ends up with more money than he started with?

Exercise 10. HMNT 2011, Guts round 8 points. For positive integers m, n, let gcd(m, n) denote the largest positive integer that is a factor of both m and n. Compute $\sum_{n=1}^{91} gcd(n, 91)$.